CK Metrics as a Software Fault-Proneness Predictor #773749

di Sunil Sikka

BookRix

(Ancora nessuna recensione) Scrivi una recensione
5,49€

Leggi l'anteprima

Predicting Fault-proneness of software modules is essential for cost-effective test planning. Fault-proneness could play a key role in quality control of software. Various studies have shown the importance of software metrics in predicting fault-proneness of the software. “Classic” set of metrics was planned by Chidamber and Kemerer in 1991. Chidamber and Kemerer (CK) metrics suite is the most widely used metrics suite for the purpose of object-oriented software fault-proneness prediction. CK metrics are used for numerous function of study, e.g. defect prediction. CK metrics are the good predictor of fault-proneness of classes.C5.0 algorithm is one of the classification techniques of data mining. It is necessarily selected to partition data set into several smaller subsets in every recursion of creating decision tree. Object-oriented metrics play a very important role to quantify the effect of key factors to determine the fault-proneness. For fault-prediction model CK Metrics: Weighted Methods for Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Lack of Cohesion of Methods (LCOM), Response for Class (RFC), and Coupling Between Objects (CBO), are used as a independent variables.

Aggiunta al carrello in corso… L'articolo è stato aggiunto

Con l'acquisto di libri digitali il download è immediato: non ci sono costi di spedizione

Altre informazioni:

ISBN:
9783743872325
Formato:
ebook
Editore:
BookRix
Anno di pubblicazione:
2018
Dimensione:
705 KB
Protezione:
nessuna
Lingua:
Inglese
Autori:
Sunil Sikka